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Abstract. We in this paper study periodic instantons and domain structures in a theoretical film consisting
of biaxial-anisotropic ferromagnets. In a proper approximation the equation of motion of the magnetization
vector as a space-time function in the film is reduced to the 1+2-dimensional sine-Gordon field equation
in strong anisotropy limit. Static periodic instantons, which are solutions of Euclidean field equantion,
and various new domain structures are obtained analytically. We also investigate the energy density and
stability of the periodic instantons.

PACS. 05.45.Yv Solitons – 75.70.Kw Domain structure (including magnetic bubbles)

1 Introduction

Macroscopic magnetization tunneling is a subject which
has been investigated extensively and is of growing in-
terest [1–6]. When either a giant spin or (in bulk ma-
terial) a domain wall tunnels between degenerate states,
we have the situation of macroscopic quantum coherence
(MQC) [1–6]. Until now only magnetic molecular clus-
ters, for instance the octanuclear iron oxo-hydroxo cluster
Fe8, have been the most promising candidates to observe
MQC [7,8]. Quantum tunneling in this case is dominated
by the instanton configuration which is the solution of
Euclidean classical field equation with finite action [9–14].
The instanton technique is a powerful tool in the eval-
uation of the tunneling rate [9–14]. However, there are
very few theories which permit an explicit calculation and
investigation of such classical field configurations i.e in-
stantons except in the case of 1-dimension where the ex-
plicit instanton solution is available and has been widely
used to study the tunneling effects in various branches
of physics, especially, the macroscopic magnetization tun-
neling in a single-domain magnet [7,8]. It is certainly of
interest to extend the investigation of macroscopic quan-
tum tunneling in a single-domain magnet to the tunneling
in a field model and find the instanton configurations in
higher dimensions. The main goal of the present paper
is to obtain the static instanton configurations (domain
walls), the time dependent versions of which are responsi-
ble for quantum tunneling [13,14], in the theoretical film
consisting of mesoscopic magnets.

The domain structures which are the static solutions
of real time field equation in the film have also attracted
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considerable interests [15–18] recently motivated by the
possible applications in the semiconductor microelectron-
ics technology and the development of devices based on
the giant magnetoresistance effect.

This paper is of two-fold. In the first part the instan-
ton configurations are investigated and various domain
structures are given in the second part. Particularly in
Section 2 we introduce the film-model with magnetiza-
tion vector lying in the film-plane in the strong anisotropy
limit which is seen to be described by the 1+2-dimensional
sine-Gordon field equation. Section 3 is devoted to the
static periodic instanton configurations which minimize
the Euclidean field action and are seen to be the domain-
wall solutions in the system considered. The stability of
static periodic instantons is analyzed in Section 4. Finally
in Section 5 we present various domain structures which
are static solutions of (real time) field equation.

2 Model

We begin with the Hamiltonian operator of 2-dimensional
simple cubic lattice consisting of biaxial anisotropic ferro-
magnets described by the spin operator Ŝ,

Ĥ = −J
∑
〈i,j〉

Ŝi·Ŝj +K1

∑
i

(
Ŝz

i

)2

+K2

∑
i

(
Ŝy

i

)2

, (2.1)

where J (> 0) is the exchange constant and K1 > K2 > 0
are the anisotropy energies. The ferromagnet at each lat-
tice site possesses a XY easy plane with a X easy axis.
From the Heisenberg equation of motion for the spin op-
erator of the ferromagnet on the kth site

d

dt
Ŝk =

1
i�

[
Ŝk, Ĥ

]
, (2.2)
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and following reference [19] to treat the giant spin as a
classical vector [20,21] such that Ŝk → �S (x, y, t) the dif-
ferential equations of the spin vector in the spherical co-
ordinates �S = S(sin θ cosϕ, sin θ sinϕ, cos θ) is found as
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(2.3)

where the constants a and κ1,2 are given by

a =
2J
�
, κ1 =

2K1

�
, κ2 =

2K2

�
,

and x and y denote the dimensionless spatial coordinates
measured in the unit of lattice constant. For strong uni-
axial anisotropy, i.e. κ1 � κ2 ( this limit may not be the
case for molecular cluster Fe8), the spin vectors are forced
to rotate in the XY easy plane i.e. in plane of film and we
may assume that θ = π

2 −δ where δ denotes a small pertur-
bation angle. Up to the first order of the small quantity δ
and noticing again the strong uniaxial anisotropy κ1 � a
we obtain

∂δ

∂t
= aS

∂2ϕ

∂x2
+ aS

∂2ϕ

∂y2
− κ2

2
S sin 2ϕ,

∂ϕ

∂t
= κ1Sδ. (2.4)

The equation of motion for the angle ϕ is seen to be

∂2ϕ

∂x2
+
∂2ϕ

∂y2
− ∂2ϕ

∂t̃2
= η sin 2ϕ, (2.5)

where t̃ = S
√
aκ1 t is the dimensionless time and the

constant η = k2
2a is dimensionless. From now on we drop

the over head “∼” on time t and the dimensionless time
is understood.

The Lagrangian density can be written as
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1
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V (ϕ) =
1
g2

(1 − cos 2ϕ), (2.6)

with g =
√

2
η . The canonical momentum density is de-

fined by

Π =
∂£
∂ ∂ϕ

∂t

=
∂ϕ
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, (2.7)

and we have the Hamiltonian density

H =
1
2
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1
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1
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+ V (ϕ). (2.8)

3 Static instantons (domain walls)
of Euclidean field equation

Instanton method plays a central role in the investigation
of quantum tunneling. Following references [13,22] we de-
rive the periodic instantons of two-dimension.

The Euclidean Lagrangian is

£e =
1
2
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1
2
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1
2
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+ V (ϕ), (3.1)

where τ = it denotes the imaginary time. The static
Euclidean field equation is seen to be

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= η sin 2ϕ. (3.2)

We look for trial solution ϕ(ξ) with ξ = x+uy,where u is
a constant. Then we have(

1 + u2
) d2ϕ

dξ2
= η sin 2ϕ. (3.3)

The integrated equation of motion is seen to be

1
2

(
dϕ

dξ

)2

− 1
(1 + u2)

V (ϕ) = −E, (3.4)

with the classical energy E ≥ 0 being a constant of inte-

gration. We define k2 = 1 − (1+u2)g2E

2 and obtain(
dϕ

dξ

)2

=
4

(1 + u2) g2

(
k2 − cos2 ϕ

)
. (3.5)

The solution for the energy parameter E confined to a
region 0 < E < 2

(1+u2)g2 is found as

ϕs (ξ) = arccos
[
ksn

(
− 2
g
√

1 + u2
ξ, k

)]
, (3.6)

where sn, cn, dn, ... are Jacobian elliptic functions with
modulus k. The definition and properties of the Jacobian
elliptic functions are given in the Appendix. ϕs (ξ) =
ϕs (ξ + L) is a periodic function with period L such that

2
g
√

1 + u2
L = 4nK (k) , (3.7)

where K(k) is the complete elliptic integral of the first
kind and n = 1, 2, 3... We demand that ϕs (x, y)be peri-
odic with periods Lx and Ly along the x and y-axis re-
spectively, i.e.,

ϕs (x, y) = ϕs (x+ Lx, y) = ϕs (x, y + Ly) , (3.8)
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Fig. 1. Periodic domain-wall configuration.

Fig. 2. Spatial distribution of magnetization vector for
domain-wall solution (3.6) of k = 0.7 with the units of the x
and y-axis being g

√
1 + u2/2 and g

√
1 + u2/2|u| respectively.

which leads to

2Lx

g
√

1 + u2
= 2K (k) ,

2|u|Ly

g
√

1 + u2
= 2K (k) . (3.9)

The periodic potential and the static instanton ϕs (ξ),
which is also known as sphaleron in field theory [13,22],
are shown in Figure 1. The magnetization vector as a func-
tion of spatial coordinates is plotted in Figure 2 with the
modulus k = 0.7.

In the limit k → 0 (E → 2
(1+u2)g2 , namely, the energy

approaches the top of the barrier), the solution tends to a
trivial configuration

ϕt
s =

π

2
. (3.10)

In the limit k → 1(E → 0), the solution becomes

ϕ0
s (x, y) = arccos

[
tanh

(
−2
g

(x+ uy)√
1 + u2

)]
, (3.11)

Fig. 3. Spatial distribution of magnetization vector for
domain-wall solution (3.11) of k = 1.0.

which is seen to be the familiar domain wall configuration
shown in Figure 3.

The energy density of a static field configuration in a
strip of one period length and unit width can be obtained
from the static energy functional [22,23]
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∫ K(k)
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where ξ′ = 2
g
√

1+u2 ξ, k
′
=

√
1 − k2 and E (k) denotes the

complete elliptic integral of the second kind. Using the
expansion of complete elliptic integrals K(k) and E (k) in
power series of modulus
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we find the corresponding energy densities

ε
[
ϕt

s

]
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2π
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, (3.15)

ε
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s

]
=

8
g2
, (3.16)

for the trivial configurations ϕt
s and ϕ0

s respectively. The
static instantons (called sphalerons [13,22]) play an impor-
tant role in the barrier transition. The barrier transition



218 The European Physical Journal B

rate at temperature T per unit area in the film can be
evaluated in terms of the energy density of sphaleron such

that Γ ∼ e
− ε[ϕs]

KB T known as Arrhenius law, where KB is
the Boltzmann constant and the time-dependent instan-
tons are responsible for the quantum tunneling [14].

4 Stability of the periodic (static) instantons

It is interesting to present a general criterion of the sta-
bility of the static configuration ϕc(x, y). To this end
we study time-dependent equation to obtain the normal
modes of small oscillation around the classical solution
such that

ϕ (x, y, t) = ϕc (x, y) +
∑

k

ψk (x, y) eiωkt, (4.1)

where ψk (x, y) denotes perturbation field. Substituting
this form into the time-dependent equation (2.5), we ob-
tain the two-dimensional Schrödinger like equation{
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with periodic condition
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The periods are obtained from equation (3.9) as
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with kx, ky = 0, 1, 2... and
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Using the expansion of complete elliptic integral K(k)
in power series of the modulus k for k → 0, we obtain
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]
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which is negative for kx = ky = 0 and the trivial configu-
ration ϕt

s is unstable. For the periodic configuration (3.6)
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we obtain the discrete eigenfunctions
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and corresponding eigenvalues

ω2
1 = 0, ω2

2 =
4
g2

(
k2 − 1

)
, ω2

3 =
4
g2
k2. (4.11)

The second one is negative and the periodic, static instan-
ton equation (3.6) is unstable too, while the domain wall
solution equation (3.11) corresponding to k → 1 is sta-
ble seen from the fact that the negative mode ω2

2 merges
to the zero mode ω2

1 in this case. The stability behavior
of two-dimensional sphalerons is the same as that of one-
dimensional case [13].

5 Domain structures

Static solutions of real time field equation (2.5) may be
also of interest. We scale the spatial coordinates by x̃ =√
ηx, ỹ =

√
ηy and the equation becomes

∂2ϕ

∂x̃2
+
∂2ϕ

∂ỹ2
= sin 2ϕ. (5.1)

From now on we drop the over head “∼” on the dimen-
sionless spatial coordinates with the new scale understood.
Assuming ϕ = 2 arctan

[
X(x)
Y (y)

]
[24] we have

X
′′

= 2αX3 + (2 − β)X,

Y
′′

= 2αY 3 + βY, (5.2)

here, α, β are arbitrary constants.
(1) α > 0, β < 0, we obtain the breather like configu-

ration

ϕ (x, y) = 2 arctan

{
±
√

2 − β

−β
sin
[√−βy]

sinh
[√

2 − βx
]} , (5.3)

with the magnetization vector plotted in Figure 4.
(2) α > 0, β = 1, we have

ϕ (x, y) = 2 arctan

±
cot
[√

1
2x
]

cot
[√

1
2y
]
 , (5.4)

with the spatial distribution of magnetization vector
shown in Figure 5.
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Fig. 4. Spatial distribution of magnetization vector for solu-
tion (5.3) of β = −1.

(a)

(b)

Fig. 5. Spatial distribution of magnetization vector for solu-
tion (5.4). (a) multi-period, (b) one period.

Fig. 6. Spatial distribution of magnetization vector for solu-
tion (5.5) of β = 1.

Fig. 7. Spatial distribution of magnetization vector for solu-
tion (5.6) of β = 1.

(3) α > 0, 0 < β < 2, we have

ϕ (x, y) = 2 arctan

{
±
√

2 − β

β

sinh
[√
βy
]

sinh
[√

2 − βx
]} , (5.5)

and the magnetization vector is plotted in Figure 6.
(4) α < 0, 0 < β < 2, the solution of domain struc-

ture is

ϕ (x, y) = 2 arctan

{
±
√

2 − β

β

cosh
[√
βy
]

cosh
[√

2 − βx
]} , (5.6)

with the spatial distribution of magnetization vector
shown in Figure 7. The solutions equations (5.3, 5.4) are
periodic configurations. It may be worth while to empha-
size that the domain structures obtained here are valid in
an infinite film without boundary. For a practical film of
finite size a proper boundary condition is required such



220 The European Physical Journal B

that the magnets at boundary should be parallel to the
boundary edge in order to remove the possible net mag-
netic charge so that having lower energy.

6 Conclusion

Periodic static instantons and domain structures in the
ferromagnetic film are obtained analytically. We pay spe-
cial attention to the periodic domain-wall configurations
(sphalerons) which are static solutions of Euclidean field
equation and are responsible for the barrier transition
in the two-dimensional field model. The energy densities
equations (3.12, 3.15) and (3.16) can be directly used to
evaluate the barrier transition rate in the corresponding
field model. However the study of the quantum tunneling
effects is beyond the scope of the present paper. Besides
the application in the barrier transition the new domain-
wall configurations and domain structures of their own are
of theoretical and practical interests.

This work was supported by the Nature Science Foundation of
China under Grant No. 10075032.

Appendix: Jacobian elliptic functions

The Jacobian elliptic function sn(p, k) of modulus k (0 <
k < 1) is defined in the integral form,

p =
∫ q

0

dt√
(1 − t2) (1 − k2t2)

, (A.1)

where q = sn (p, k) or p = sn−1 (q). The functions cn (p, k)
and dn (p, k) are defined by the following relations,

cn (p, k) =
√

1 − sn2 (p, k), (A.2)

dn (p, k) =
√

1 − k2sn2 (p, k). (A.3)

More properties of these functions can be found in refer-
ence [25].
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